

CERTIFIED PUBLIC ACCOUNTANT ADVANCED LEVEL 2 EXAMINATIONS A2.2: STRATEGIC PERFORMANCE MANAGEMENT DATE: THURSDAY 29, AUGUST 2024 MARKING GUIDE AND MODEL ANSWERS

A2.2 Page 1 of 23

SECTION A

QUESTION ONE

Marking guide

1	(a)(i)	Calculation of the tangent	1
		Calculation of maximum units at the turning point	1
		Calculation of the highest profit	2
		Calculation of the lowest profit	1
		Strategies at decline phase(3*1)	3
		Total	8
1	(a)(ii)	Grouping research and development sub costs(8*0.5)	4
		Grouping decommissioning sub costs costs(4*0.5)	2
		Correct total cost	2
		Correct cost per unit	1
		Correct computed price	1
		Correct price differences	1
		Total	11

Model answers

1(a)

(i)

 $10X^2-50000X+144,000=0$

Finding the gradient line/tangent at the stagnant stage in year three.

dy/dx = 20X-50,000 = 0

20X-50.000 = 0

20X=50000

X=50000/20=2,500

Maximum profit (Turning point of the curve)

10(2500) (2500)-50,000+144,000 = FRW 62,594,000

1a(ii) Cost gap = (Current market Price-Life cycle cost per unit) = (3,800-8,363) = FRW 4,563

Decline phase

The decline stage begins in year three with the maximum profit of FRW 62,594,000 all the way to year five This is a sharp decline. To increase profitability, the firm can apply the following strategies.

- i. Rebranding-Nguvu can be rebranded by Chan ganging the packaging in order to attract new sales
- ii. The firm can create new markets especially the export ones
- iii. The firm can work on its operations costs, invest in robotics and use cheap power in order to reduce the cost per unit leaving a Signiant markup as profit
- iv. Minimize time to the market by speeding up the research process.
- v. Minimize breakeven point
- vi. Maximize the length of the life span of the product

A2.2 Page 2 of 23

vii. Design or reengineer costs out of the product with an intention of reducing them without compromising on quality.

Product life cycle cost per unit, cost gap and grouping of costs.

Year	2024	2025	2026	2027	2028	Total
	FRW	FRW	FRW	FRW	FRW	
Enhancement costs of Nguvu power	3,000,0	2,000,00				5,000,00
Special equipment and additives used in research	85,000, 000	25,500,0 00				110,500, 000
Designing costs and remodeling costs	5,500,0 00	5,000,00 0				10,500,0 00
Payment paid to a laboratory that tested the product quality	500,000	500,000				1,000,00
Finance costs that directly funded the research and development	10,000,	2,000,00				12,000,0 00
Original design and development of the of Nguvu power	40,000, 000	8,000,00				48,000,0 00
Contingencies	35,000, 000	4,000,00				39,000,0 00
Project management costs	14,000, 000	-				14,000,0 00
Staff costs for the lead research consultant	7,000,0 00	3,000,00				10,000,0 00
Total research and development costs	200,000	50,000,0 00				250,000, 000
Transporting equipment to their final storage point						1,400,00 0
Cost of disassembling equipment						1,000,00
Cost of planting tree after decommission the project						1,400,00

A2.2 Page 3 of 23

Year	2024	2025	2026	2027	2028	Total
	FRW	FRW	FRW	FRW	FRW	
Cleanup costs after decommissioning the project						1,200,00
Total decommissioning costs Production cost per unit						_
Material cost per unit(FRW)	200	200	200	200	200	
Total material cost	1,000,00	5,000,00	12,000,0	300,000	100,000	18,400,00
Labor cost per unit (FRW)	1,500	1,500	1,500	1,500	1,500	
Total labour cost	7,500,00 0	37,500,0 00	90,000,0 00	2,250,00	750,000	138,000,0 00
Overhead cost per unit(FRW)	300	280	220	250	450	
Total overhead cost	1,500,00 0	7,000,00	13,200,0 00	375,000	225,000	22,300,00
Clients additional cost per unit (FRW)	190	170	170	170	170	
Total client cost	950,000	4,250,00 0	10,200,0 00	255,000	85,000	15,740,00 0
Cost per unit	10,002,1 90	49,502,1 50	115,202, 090	2,927,12 0	1,077,320	
Production and sales quantities	5,000	25,000	60,000	1,500	500	92,000
Total cost						699,440,0 00
Cost per unit						7,603
Mark up percentage						0
Mark up						760
Selling price per unit						8,363
Current selling price						3,800
Gain in sales value						4,563

A2.2 Page 4 of 23

Advice

The board should launch Nguvu power. The will generate an extra sales value of FRW 203 per unit. 1 (b)

Marking guide

1b	(i)	Formulation of the correct objective function	1
		Formulation of the correct constraints(6*0.5)	3
		Calculating coordinates(4*0.5)	2
		Showing the constraints on a Cartesian plan(4*0.5)	2
		Showing the scale	1
		Calculating correct profits at the corner points(4*0.5)	2
		Calculating maximum profits	1
1b	(ii)	Identifying non-binding constraints	1
		Defining shadow price and slack(2*1)	2
		Total marks	15

Model answer

Formulation of the objective function
The objective is to maximize the contribution
Let the total units of cream produced be C
Let the total units of lotion produced be L
Let Z be the total contribution for C and L
Therefore, the objective function
Z=9,000C+8,000L

Subject to the following constraints:

 Silk powder
 $3C+2L \le 5,000,000$

 Silk amino acid
 $C+0.5L \le 1,600,000$

 Aloe vera
 $4C+2L \le 8,000,000$

 Skilled labor
 $4C+5L \le 9,600,000$

Demand for lotion L≥2,000,000 Maximum

Non negativity $C \ge 0$ Non negativity $L \ge 0$

Converting inequalities to equations and calculating coordinates 3C+2L=5,000,000

When

C=1,666,667 L=0

C=0 L=2,500,000

A2.2 Page 5 of 23

C+0.5L=1,600,000

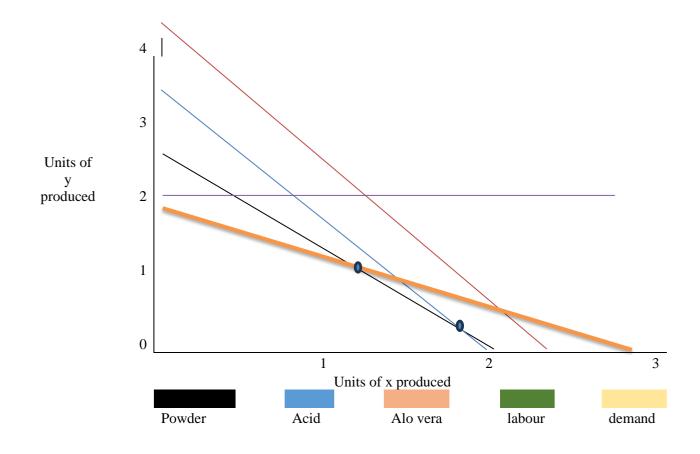
When

C=1,600,000 L=0

C=0 L=3,200,000

4C+2L=8,000,000

When


C=2,000,000 L=0 C=0 L=4,000,000

4C+5L=9,600,000

When

C=2,400,000 L=0

C=0 L=1,920,000

A2.2 Page 6 of 23

```
4C+5L=9,600,000
C+0.5L=1,600,000
```

The optimal production mix can be found by solving the two equations given for C and L. Where there is minimal productions given the constraints which is at

```
Silk amino acid, C + 0.5L = 1,600.000... (i)
Skilled labour, 4C + 5L = 9,600,000... (ii)
```

Multiplying the equation (i) by 10 produces:

```
10C + 5L = 16,000,000 (iii)

4C + 5L = 9,600,000 .....(iv)
```

Subtract equation (iv) for (iii):

6L = 6,400,000L = 1,066,667

Substitute in equation (i) to find y

Y = 1,066,667

The optimal solution is when 1,066,667 lotions 1,066,667 creams are produced.

The contribution gained is Frw 18.133 billion:

C = 9,000C + 8,000L

 $C = (9000 * 1,066,667) + (8,000 \times 1,066,667)$

C = 18.133 billion

If leaner answers this question using any other acceptable method, elect to award marks.

Non-binding constraints

Silk powder and maximum demand for lotion are non-binding. The two do not affect or pass through the feasible region.

Unskilled labor has no effect in our analysis. Its plenty in supply it's not a constraint.

Silk powder, Alo vera and demand are not binding variables and are not fully utilized, these are referred to as slack variables

On the other hand, Skilled labour and Amino acid and binding constraints, limiting production, a single unit of each that can be obtained externally would increase contribution, the increment in contribution is also known a s shadow price of the limiting variable

1 (c)

Activity based costing

This is an alternative to traditional absorption costing.

ABC is a method of costing which involves identifying the costs of the main support activities and factors that drive the cost of each activity.

A2.2 Page 7 of 23

Ideas behind ABC

- i. Activities cause costs
- ii. Manufacturing products create demand for support activities
- iii. Costs are assigned to the products on the basis of the product's consumption of these activities.

Steps towards ABC

- i. Identify the organizations major activities
- ii. Use cost allocation and apportionment to charge overheads to each of these activities
- iii. Identify the factors which determine the size of the cost of an activity. This are known as cost drivers.
- iv. For each cost activity pool or activity cost center, calculate the absorption rate per unit of each cost driver.
- v. Charge the overhead cost to each product.

Reasons for using ABC

- i. Many resources used in most firms are currently non volume related.
- ii. The falling costs of information processing.

Throughput accounting

Throughput accounting supports a production management system which aims to maximize throughput and therefore cash generation from sales.

The concept of throughput accounting has been developed from the theory of constraints (TOC) as an alternative system of cost and management accounting in a just in time production environment.

Theory of constraints (TOC) is an approach to production management which aims to maximize sales revenue less material costs. It focuses on bottleneck (binding constraint) which act as a constraint to the maximization of throughput. Throughput is money generated from sales revenue less material cost.

- i. Steps towards theory of constraints.
- ii. Identify the constraint (bottleneck resource)
- iii. Make a decision on how to exploit the bottleneck in order to maximize throughput.
- iv. Synchronize everything else to the decision made in step II
- v. Evaluate the performance constraint.
- vi. If the constraint has shifted during any of the above steps, go back to step 1.

Throughput accounting concepts

- i. Profitability is determined based on the rate at which money is generated through sales.
- ii. The ideal inventory is zero. No stocks are kept in throughput accounting,
- iii. In the short run, all factory costs are fixed.

Conclusion

- i. Throughput accounting tends to give production priority to products that generates the highest throughput.
- ii. Throughput accounting has a short term focus.
- iii. ABC tends in improving all activities in a firm while throughput accounting tends to isolate some of the activities.
- iv. ABC policy is to reduce cost per unit while TOC focus is reducing overall costs of a firm.
- v. TOC ignores operation costs. ABC considers all operation costs.

A2.2 Page 8 of 23

Benchmarking

Benchmarking can be defined as a scientific approach of setting objectives which will act as targets in production management.

Benchmarking can also be defined as a concept that describes comparisons made in regard to a firm that represents best practice. Its related to performance evaluation. The directors of Muhima Group Ltd (MGL) recently met an and agreed to benchmark their internal operations with those of Sohpyriah Ltd. This means Sohpyriah Ltd internal processes represent best practice.

Steps in benchmarking.

- i. Planning-Involves selecting an activity to be benchmarked,
- ii. Analysis-Identifying the extent to which the firm is under performing.
- iii. Action-Involved putting up measures towards improving performance.
- iv. Review-Monitoring progress against plans making changes where needed.

Muhima Group Ltd (MGL has already identified a French conglomerate in similar business as a basis of benchmarking. This company has invested in cut edge technology and thus able to reduces its operations cost, staff costs and energy costs.

Looking at the analysis previously given by Sophyriah Ltd, after automation of the processes and investment in solar power, the total costs reduced drastically.

Before automation

	\$	Percentage on sales
Turnover	1800000	
Energy costs	200,000	11%
Labour costs	295,000	16%
Operation costs	780,000	43%

After automation

	\$	Percentage on sales
Turnover	1,800,000	
Energy costs	10,000	1%
Labor costs	55000	3%
Operation costs	465,000	26%

Likewise, if Muhima Group Ltd (MGL) makes similar steps in uptake of automation and use of clean energy, in the long run, they can bring down the operations and production costs. Investments in robotic can also bring down labor costs in Muhima Group Ltd (MGL) which is a huge as compared to material and overhead costs per unit.

This benchmarking come with its equal measure of difficulties.

The major one being inability to get all data required in comparison.

Firms maintain a lot of secrets or information that be used against their competitive advantage.

Differences in management attitudes and level of skill and competences can hinder objective benchmarking.

A2.2 Page 9 of 23

National culture of being cost conscious and level of technology and its related costs can be another big obstacle to benchmarking.

SECTION B

QUESTION TWO

Marking guide

2a	(i)	Description	Marks	Total
		(Contribution/limiting factor)		
		Correct hours spent to produce a unit of;		
		Cabro stones	0.5	
		Building block	0.5	
		Tile	0.5	
		Correct total hours for actual production	1.5	
		Correct deficit hours	1	
		Correct variable overhead cost per unit	1.5	
		Correct total variable cost	1.5	
		Correct contribution	1.5	
		Correct contribution per limiting factor	1.5	
		Total		10
		Optimal production mix		
		Correct ranking(0.5*3)	1.5	
		Fixed cost per unit(0.5*3)	1.5	
		Total fixed cost (0.5*3)	1.5	
		Loss for optimal mix(0.5*3)	1.5	
		Total		6
2a	(ii)	COST OF MANUFACTURING-VIRUNGA		
		Calculating the correct labor cost per unit	0.5	
		Calculating the total overhead cost per unit	0.5	
		Calculating variable overhead cost per unit	1	
		Calculating the total variable cost per unit	1	
		Calculating the cost saved	1	
		Total		4
		Comment that they should not cease production	1	
		Comment on why NCL should not worry	1	
		Correct description of costs used in make or buy decision(2*1)	2	
		State two non-cost factors that should be considered in make or	1	
		buy decisions(2*0.5)		
		Total		5
		Total		25

A2.2 Page 10 of 23

Model answers

		BUILDIN		
(a)	CABRO	G	TILE	TOTAL
	STONE	BLOCK		
UNITS PRODUCED	20,000	30,000	50,000	
LABOR COST PER UNIT	6,000	8,000	4,000	
LABOR RATE PER HOUR	2,000	2,000	2,000	
HOURS SPENT TO PRODUCE A UNIT OF EACH PRODUCT	3	4	2	
TOTAL HOURS FOR ACTUAL PRODUCTION	60,000	120,000	100,000	280,000
AVAILABLE LABOR HOURS				200,000
DEFICIT OF LABOR HOURS				80,000
PRODUCTION ANALYSIS	CABRO	BUILDING	TILE	
	STONE	BLOCK		
PRICE (FRW)	14,000	18,500	20,400	
VARIABLE COSTS				
MATERIAL COST	3,000	4,000	5,000	
LABOUR COST	6,000	8,000	4,000	
OVERHEAD COSTS	10,000	15,000	18,000	
PERCENTAGE OF VARIABLE OVERHEAD	0	0	0	
VARIABLE OVERHEAD COSTS	3,000	4,500	5,400	
TOTAL VARIABLE COSTS	12,000	16,500	14,400	
CONTRIBUTION	2,000	2,000	6,000	
LIMITING FACTOR PER UNIT	3	4	2	
CONTRIBUTION/LIMITING FACTOR PER UNIT	667	500	3,000	
RANK	2	3	1	
PRODUCTION MIX				
	_			

A2.2 Page 11 of 23

RANK	PRODUCT	HRS/UNIT	UNITS	TOTAL
				HRS
1	TILE	2	50,000	100,000
	CABRO			
2	STONE	3	20,000	60,000
	BUILDING			
3	BLOCK	4	10,000	40,000
	CABRO	BUILDING	TILE	TOTAL
	STONE	BLOCK		
ODTIMAL MIV	20,000	10,000	50,000	
OPTIMAL MIX	20,000	10,000	50,000	
CONTRIBUTION PER UNIT (FRW)	2,000	2,000	6,000	
CONTRIBETION I BR CIVII (TRW)	2,000	2,000	3,000	
			300,000,0	
TOTAL CONTRIBUTION	40,000,000	20,000,000	00	
FIXED COST PERCENTAGE	0.7	0.7	0.7	
FIXED COST PER UNIT	7000	10500	12600	
		105,000,00	630,000,0	
TOTAL FIXED COST	140,000,000	0	00	
	(100,000,000	(85,000,000	(330,000,0	(515,000,000
PROFIT -OPTIMAL MIX (FRW)))	00))
COST OF MANUCTURING-VIRUNGA				
CONSTRUCTION LTD				
MATERIAL COST PER UNIT	3,500			
LABOR RECOVERY RATE	0.6			
LABOR COST	2,100			
OVERHEAD RECOVERY RATE	1.8			
TOTAL OVERHEAD	3,780			
VARIABLE OVERHEAD RATE	0.65			
VARIABLE OVERHEAD	2457			
TOTAL VARIABLE COST PER				
BUILDING BLOCK	8,057			
BUYING PRICE	18,500			

Nyamagabe construction Ltd (NCL) should not cease production of any of the three products. It will become worse of in terms of losses incase such a decision is taken. Amongst the three products, building stone gives the lowest contribution per limiting factor thus a good candidate of being dropped incase such a decision has to be made.

A2.2 Page 12 of 23

Nyamagabe construction Ltd (NCL) should worry about the thoughts of the board of Virunga super house Ltd since their marginal costs of production are less than the price Nyamagabe construction Ltd (NCL) is charging. NCL has a direct competitor who was previously a major customer.

The following are features of costs that can be used in buy or make decisions

- i. Marginal costs-variable costs
- ii. Cash flows-inflows or outflows
- iii. Costs that change.
- iv. Any other correct description.

Non cost factors to consider in buy or make decisions

- i. Quality
- ii. What to with freed staff and Assets-Psychological effect on workers.
- iii. Reliability of the external supplier,
- iv. Any other corrected answer given
- v. Level of competition

If leaner answers this question using any other explanations e.g. based on quality of the product, competition etc. elect to award marks.

A2.2 Page 13 of 23

QUESTION THREE

Marking guide

3(a)	Description	Marks	Total
	Calculation of the correct contribution in the fixed budget	1	
	calculation of the correct profit in the fixed budget	1	
	Total		2
	Calculation of the actual contribution	1	
	Calculation of the actual profit	1	
	Total		2
	Calculation of correct flexed sales figure	0.5	
	Calculation of correct flexed material cost figure	0.5	
	Calculation of correct flexed labor cost	0.5	
	Calculation of correct flexed variable overhead cost	0.5	
	Calculation of correct flexed fixed overhead cost	0.5	
	Total		2.5
	Calculation of the correct sales variance	0.5	
	Calculation of correct material cost variance	0.5	
	Calculation of correct labor cost variance	0.5	
	Calculation of correct variable overhead cost variance	0.5	
	Calculation of correct fixed overhead cost variance	0.5	2.5
	Comparison		
	Fixed budget verses actual variances and		
	Flexed budget verses actual variances		
	Sales	0.5	
	Material cost	0.5	
	Labor cost	0.5	
	Variable overhead cost	0.5	
	Fixed cost	0.5	2.5
	General justification of management accountants behaviour		
	Each right comment award 1 mark(Maximum 3 comments)	3	
	Neatness of presentation(Discretion of the marker)	0.5	
	Total		3.5
	Total		15
3(b)	Conversion of actual minutes paid to hours	0.5	
. ,	Conversion of actual minutes worked to hours	0.5	
	Calculation of correct labor idle time variance	1	

A2.2 Page 14 of 23

	Total		2
3(c)	Description of		
	Current standards	2	
	Basic standard	2	
	Attainable standard	2	
	Ideal standard	2	
	Total		8
	Total		25

Model answer

MOUCI	unbwei			-	
	(a)				PRICE/U
3					NIT
		FIXED BUDGETED PROFIT		UNITS	COST/UN
		STATEMENT			IT
		SALES			
			200,000,000	100,000	2,000
		LESS COSTS			
		MATERIAL COST			
			80,000,000	100,000	800
		LABOR COST			
			40,000,000	100,000	400
		VARIABLE OVERHEAD COST			
			20,000,000	100,000	200
		TOTAL MARGINAL COST			
			140,000,000	100,000	1,400
		CONTRIBUTION			
			60,000,000	100,000	600
		FIXED COST			
			50,000,000	100,000	500
		BUDGETED PROFIT			
			10,000,000	100,000	100

A2.2 Page 15 of 23

ACTUAL PROFIT STATEMENT		
SALES		
	380,000,000	
LESS COSTS		
MATERIAL COST		
	285,000,000	
LABOR COST		
	95,000,000	
VARIABLE OVERHEAD COST		
	38,000,000	190,000
TOTAL MARGINAL COST		
	418,000,000	
CONTRIBUTION		
	(38,000,000)	
FIXED COST	189,284	(190,000-140,000)/10,000*20,000=FRW
		80,000+109,284
ACTUALLOSS	(38,189,284)	

X	у	xy	x2
90,000	175,000	15,750,000,000	15,750,000,000
50,000	165,000	8,250,000,000	8,250,000,000
40,000	125,000	5,000,000,000	5,000,000,000
64,000	170,000	10,880,000,000	10,880,000,000
244,000	635,000	39,880,000,000	39,880,000,000
Y=a+bx			
A=109,284			
B=0.81			

FLEXED BUDGET	ACTUAL	FLEXED	VARIANCE
SALES			
	390,000,000	380,000,000	(10,000,000)
LESS COSTS			
MATERIAL COST			
	285,000,000	152,000,000	(133,000,000)
LABOR COST			
	95,000,000	76,000,000	(19,000,000)
VARIABLE OVERHEAD COST			
	38,000,000	38,000,000	-
TOTAL MARGINAL COST			
	418,000,000	266,000,000	(152,000,000)
CONTRIBUTION			
	(38,000,000)	114,000,000	152,000,000
FIXED COST		189	
	50,000,000	,284	(49,810,716)
ACTUAL PROFIT			
	(38,189,284)	64,000,000	102,189,284

³⁽b) There is no idle time since the hours paid were less than those worked, meaning idle time was not

A2.2 Page 16 of 23

paid for so it irrelevant in the analysis

Comment on the behaviour of the management accountant

The management accountant is justified in showing his anger and frustrations and annoyance because; The initial variance analysis conducted was in relation to the fixed budget and the actual budget-This comparison is erroneous and cannot give a good picture of the performance of Rukundo Public Ltd Company (RPLC).

The correct analysis should be between the flexed budget and the actual result. This analysis gives the correct picture of the performance of Rukundo Public Ltd Company (RPLC as shown in the analysis.

Description of standards

Standard costs are benchmarks for variance analysis. There are four main standards:

- i. Ideal standards-these standards are based on perfect working conditions. It's not possible to find such an environment in any firm.
 - They help in motivating employees to improve their performance with more responsibility.
- ii. Basic standards-these are standards which have been in use for a long duration of time without being adjusted. This standard does not reflect the current working conditions of a firm.

 They provide a good basis for comparison with actual results over a number of year.
- iii. Current Standards-These are standards which take into consideration of current working conditions and inefficiencies e.g. disruptions. This standard is realistic.
- iv. Attainable Standards-These are standards which are attainable under efficient working conditions. These standards do not attempt to improve on the current level of efficiency or cost.

A2.2 Page 17 of 23

QUESTION FOUR

Marking Guide

	Total		2
	Calculation of the correct material mix variance for material AYE	1	
	Calculation of the correct material mix variance for material BEE	1	
	Calculation of the correct material mix variance for material CEE	1	
	Calculation of the correct total material mix variance	1	
	Total		4
	Material yield variance		
	Calculation of the correct standard cost per unit	1	
	Calculation of the correct material yield variance	2	
	Total		3
	Activity usage variance-Deliveries		
	Calculation of correct standard quantity in the actual production	1	
	Calculation of correct standard deliveries	0.5	
	Calculation of the correct std deliveries for actual production	1	
	Calculation of the correct activity usage variance-deliveries	1	
	Total		3.5
	Activity usage variance-dispatches		
	Calculation of the correct standard dispatches	0.5	
	Calculation of the correct standard dispatches in actual production	1	
	Calculation of standard dispatch cost per dispatch	1	
	Calculation of the correct activity usage variance-deliveries	1	
	Material price planning variance	2	
	Material price operating variance	2	
	Material usage operating variance	2	
	Total		9.5
4(b)	Clear explanation of any three points (Each award 1 marks)		
	Mention that the performance prism is a framework	1	
	Mention of the five facets of the performance prism	1	
	Brief explanations on how the performance prism can be used by CSCL	1	3
	Total		25

A2.2 Page 18 of 23

Model answers

ADVANCED VARIANCES							
MATERIAL MIX							
VARIANCE							
MMV=(REVISED STD MIX-							
ACTUAL MIX)							
			ACTU				
		REVISED	AL	DIFFE		VARI	
STANDARD PRICE	WEIGHTS	MIX	MIX	RENCE	SP	ANCE	
					50	(62.50	A
ANG	0.22	1 (00	2.050	(1.050)	50,	(62,50	D
AYE	0.32	1,600	2,850	(1,250)	000	0,000)	V F
					40,	50,000	A
BEE	0.50	2,500	1,250	1,250	000	,000	V
DEL	0.50	2,300	1,230	1,230	000	,000	F
					35,		A
CEE	0.40	2,000	2,000	-	000	_	V
		y	,				F
						(12,50	A
TOTAL	1.22	6,100	6,100			0,000)	V
MATERIAL YIELD							
VARIANCE				1600			
(ACTUAL YIELD-STD		~~	WEIG				
YIELD)STANDARD COST	WEIGHTS	SP	HED				
AYE	0.32	50,000	16,000				
ATE	0.32	30,000	10,000				
BEE	0.5	40,000	20,000				
BEE	0.5	10,000	20,000				
CEE	0.4	35,000	14,000				
		,					
STANDARD COST PER UNIT			50,000				
STANDARD YIELD							
			STD				
TOTAL QUANTITY OF		SQ PER	YIEL				
MATERIAL	QTY	OUTPUT	D				
AYE	2850	0.32					
BEE	1250	0.5					
CEE	2000	0.4					
	6100	1.00	7 000				
	6100	1.22	5,000				

A2.2 Page 19 of 23

A COULA L VIED			0.200		
ACTUAL YIED			8,200		
DIFFERENCE			3,200		
STANDARD COST PER UNIT			50,000		
MATERIAL YIELD VARIANCE			160,00 0,000		F A V
OVERHEAD EXPENDITURE VARIANCE	BUDGETE D OH	ACTUAL OH	VARI ANCE		
OHEXPV=BOH-AOH	FRW	FRW	FRW		
DELIVERIES	40,000,000	50,000,00			
DISPATCHES	80,000,000	90,000,00			
ОНЕХРV=ВОН-АОН	120,000,00	140,000,0	(20,00 0,000)		A D V
ACTIVITY USAGE VARIANCES(AUV)					
ACTIVITY USAGE VARIANCES(AUV)- DELIVERIES					
AUV(D)=(SD-AD)STD COST PER DELIVERY					
STANDARD INPUT OF MATERIAL	1.22				
STANDARD OUTPUT	8,000				
STANDARD QUANTITY	9,760				
STD QUANTITY PER DELIVERY	800				
STANDARD DELIVERIES STD DELIVERIES FOR	12				
ACTUAL PRODUCTION					
(8,200*12.2/8,000)	13				
ACTUAL DELIVERIES	10				

A2.2 Page 20 of 23

DIFFERENCE	3				
STANDARD COST PER					
DELIVERY	50,000				
AUV(D)=(SD-AD)STD COST					
PER DELIVERY	150,250	FAV			
TOTAL STD COST OF					
DELIVERIES	40,000,000				
TOTAL DELIVERIES	800				
STD COST PER DELIVERY	50,000				
SID COSI FER DELIVER I	50,000				
ACTIVITY USAGE					
VARIANCE(AUV)-					
DISPATCHES					
TOTAL STD COST OF					
DISPATCHES	80,000,000				
QTY PER DISPATCH	400				
STD COST PER DISPATCH	200,000				
STD QUANTITY TO BE	0.000				
PRODUCED	8,000				
STD OTY OF DISDATCH	400				
STD QTY OF DISPATCH	400				
STD DISPTACHES	20				
STD DISPTACHES FOR	20				
ACTAUL PRODUCTION					
(8,200*20/8,000)	21				
ACTUAL DISPATCHES	23				
DIEFERENCE					
DIFFERENCE	(2)				
STD COST PER DISPATCH	200,000				
ACTIVITY USAGE	200,000				
VARIANCE(AUV)-					
DISPATCHES	(400,000)	ADV			
	(120,000)	, ,			
Material price planning					
variance	<u> </u>				
Original standaed price	40,000				

A2.2 Page 21 of 23

					1	ĺ
Revised standard price	45,000					
p	,					
Material price planning variance	(5,000)					
	,					
Actual quantity	2,600					
Total material price planning	(13,000,00					
variance	0)	ADV				
Material price operating						
variance						
2,600litres of materials should	117,000,00					
cost 2600*45,000	0					
	115 400 00					
	115,400,00					
They did cost	0					
Matarial mries amousting various	1 600 000	EAN				
Material price operating variance	1,600,000	FAV				
Material usage operating variance						
8,200 units of Amelia should use						
8,200*0.5 Liters of Bee	4,100					
8,200 °0.3 Liters of Bee	4,100					
They did use(Litres of Bee)	2,600					
They did use(Littes of Dee)	2,000					
Variance	1,500	FAV				
Original standard price per Kg	40,000					
Material usage operating						
variance	60,000,000	FAV				

The comment should be either the variance is Adverse (ADV) or Favorable (FAV). Some learners may opt to use the term Unfavorable (UFAV) instead of Favorable (FAV).

4.

(b)

The performance prism is a second-generation measurement framework designed to assist in performance measurement selection. Its beneficial since it can assist the management team is selecting the right measure of performance.

The performance prism contains five facets:

- i. Stakeholder satisfaction.
- ii. Strategies facet.
- iii. Process facet.
- iv. Capabilities facet.
- v. Stakeholder contribution facet.

A2.2 Page 22 of 23

Cardel industrial soap company Ltd (CSCL) can apply this framework in understanding each stakeholder (customers, banks, government, creditors staff, shareholders and potential investors) needs and then develop strategies that can satisfy this needs. It emphasizes a two-way stakeholder relationship. It's a shift from reliance of Financial performance indicators.

- i. Some farmers have started uprooting this trees and replacing them with food crops -This is in relation to low prices offered by the firm. The firm should look for ways of paying better prices to the farmers.
- ii. The revision of the prices will motivate farmers into not going on with uprooting exercise.
- iii. A survey done by the ministry of agriculture have found that Cardel industrial soap company Ltd (CSCL) is involved in massive deforestation. This is a risk to the firm. Court cases and multiple concern from lobbyists can injure operations. The firm should look for ways of supporting afforestation exercise,
- iv. The staff are ever complaining of salary cuts and delays. Recently they lost key staff to a competitor in Zambia-The firm should pay their staff on time and stop salary cuts in order to motivate them.

End of Marking Guide and Model Answer

A2.2 Page 23 of 23